Anonymous Walk Embeddings.
, and .
ICML (2018)

The task of representing entire graphs has seen a surge of prominent results, mainly due to learning convolutional neural networks (CNNs) on graphstructured data. While CNNs demonstrate stateof-the-art performance in graph classification task, such methods are supervised and therefore steer away from the original problem of network representation in task-agnostic manner. Here, we coherently propose an approach for embedding entire graphs and show that our feature representations with SVM classifier increase classification accuracy of CNN algorithms and traditional graph kernels. For this we describe a recently discovered graph object, anonymous walk, on which we design task-independent algorithms for learning graph representations in explicit and distributed way. Overall, our work represents a new scalable unsupervised learning of state-of-the-art representations of entire graphs.
  • @e.fischer
  • @dblp
This publication has not been reviewed yet.

rating distribution
average user rating0.0 out of 5.0 based on 0 reviews
    Please log in to take part in the discussion (add own reviews or comments).