Article,

Allosteric activation of Na+-Ca2+ exchange by L-type Ca2+ current augments the trigger flux for SR Ca2+ release in ventricular myocytes.

, , and .
Biophys J, 94 (7): L54--L56 (April 2008)
DOI: 10.1529/biophysj.107.127878

Abstract

The possible contribution of Na(+)-Ca(2+) exchange to the triggering of Ca(2+) release from the sarcoplasmic reticulum in ventricular cells remains unresolved. To gain insight into this issue, we measured the "trigger flux" of Ca(2+) crossing the cell membrane in rabbit ventricular myocytes with Ca(2+) release disabled pharmacologically. Under conditions that promote Ca(2+) entry via Na(+)-Ca(2+) exchange, internal Na(+) (10 mM), and positive membrane potential, the Ca(2+) trigger flux (measured using a fluorescent Ca(2+) indicator) was much greater than the Ca(2+) flux through the L-type Ca(2+) channel, indicating a significant contribution from Na(+)-Ca(2+) exchange to the trigger flux. The difference between total trigger flux and flux through L-type Ca(2+) channels was assessed by whole-cell patch-clamp recordings of Ca(2+) current and complementary experiments in which internal Na(+) was reduced. However, Ca(2+) entry via Na(+)-Ca(2+) exchange measured in the absence of L-type Ca(2+) current was considerably smaller than the amount inferred from the trigger flux measurements. From these results, we surmise that openings of L-type Ca(2+) channels increase Ca(2+) near Na(+)-Ca(2+) exchanger molecules and activate this protein. These results help to resolve seemingly contradictory results obtained previously and have implications for our understanding of the triggering of Ca(2+) release in heart cells under various conditions.

Tags

Users

  • @hake

Comments and Reviews