Article,

New substituted 9-alkylpurines as adenosine receptor ligands

, , , , , and .
Bioorg Med Chem, 6 (5): 523-33 (May 1998)Camaioni, E Costanzi, S Vittori, S Volpini, R Klotz, K N Cristalli, G Research Support, Non-U.S. Gov't England Bioorganic & medicinal chemistry Bioorg Med Chem. 1998 May;6(5):523-33..

Abstract

In the present study an investigation of the structure-activity relationships in 9-ethylpurine derivatives, aimed at preparing A1, A2A, A2B, and A3 selective adenosine receptor antagonists, was undertaken. Our synthetic approach was to introduce various substituents (amino, alkoxy and alkynyl groups) into the 2-, 6-, or 8-positions of the purine ring. The starting compounds for each series of derivatives were respectively: 2-iodo-9-ethyladenine (9), obtained from 2-amino-6-chloropurine (5); 9-ethyl-6-iodo-9H-purine (11), 8-bromo-9-ethyl-adenine (3) and 8-bromo-9-ethyl-6-iodo-9H-purine (13), obtained from 9-ethyl-adenine (2). The synthesized compounds were tested in in vitro radioligand binding assays at A1, A2A, and A3 human adenosine receptor subtypes. Due to the lack of a suitable radioligand the affinity of the 9-ethyladenine derivatives at A2B adenosine receptors was determined in adenylyl cyclase experiments. In general, the series of 9-ethylpurine derivatives exhibited a similar pharmacological profile at A1 and A2A receptors whereas some differences were found for the A3 and the A2B subtypes. 8-Bromo-9-ethyladenine (3) showed higher affinity for all receptors in comparison to the parent compound 2, and the highest affinity in the series for the A2A and A2B subtypes (Ki = 0.052 and 0.84 microM, respectively). Analyzing the different substituents, a phenethoxy group in 2-position (10a) gave the highest A2A versus A2B selectivity (near 400-fold), whereas a phenethylamino group in 2- and 6-position (10b and 12b, respectively) improved the affinity at A2B receptors, compared to the parent compound 2. The presence of a hexynyl substituent in 8-position led to a compound with good affinity at the A3 receptor (4d, Ki = 0.62 microM), whereas (ar)alkynyl groups are detrimental for the potency at the A2B subtype. These differences give raise to the hope that further modifications will result in the development of currently unavailable leads with good affinity and selectivity for A2B adenosine receptors.

Tags

Users

  • @pharmawuerz

Comments and Reviews