Phrase-based hashtag recommendation for microblog posts
, , , and .
Science China Information Sciences 60 (1): 012109 (2016)

In microblogs, authors use hashtags to mark keywords or topics. These manually labeled tags can be used to benefit various live social media applications (e.g., microblog retrieval, classification). However, because only a small portion of microblogs contain hashtags, recommending hashtags for use in microblogs are a worthwhile exercise. In addition, human inference often relies on the intrinsic grouping of words into phrases. However, existing work uses only unigrams to model corpora. In this work, we propose a novel phrase-based topical translation model to address this problem. We use the bag-of-phrases model to better capture the underlying topics of posted microblogs. We regard the phrases and hashtags in a microblog as two different languages that are talking about the same thing. Thus, the hashtag recommendation task can be viewed as a translation process from phrases to hashtags. To handle the topical information of microblogs, the proposed model regards translation probability as being topic specific. We test the methods on data collected from realworld microblogging services. The results demonstrate that the proposed method outperforms state-of-the-art methods that use the unigram model.
  • @hotho
This publication has not been reviewed yet.

rating distribution
average user rating0.0 out of 5.0 based on 0 reviews
    Please log in to take part in the discussion (add own reviews or comments).