Artikel,

GPS Instrumental Biases Estimation Using Continuous Operating Receivers Network

, , und .
Geoinformatica - An International Journal (GIIJ), 6 (1): 1 - 12 (Februar 2019)

Zusammenfassung

Precise Total Electron Content (TEC) are required to produce accurate spatial and temporal resolution of Global Ionosphere Maps (GIMs). Receivers and Satellites Instrumental Biases (IBs) are one of the main error sources in estimating precise TEC from Global Positioning Systems (GPS) data. Recently, researchers are interested in developing models and algorithms to compute IBs of receivers and satellites close to those computed from the Ionosphere Associated Analysis Centers (IAAC). Here we introduce a MATLAB code called Multi Station IBs Estimation (MSIBE) to calculate satellites and codeless tracking receivers IBs from GPS data. MSIBE based on spherical harmonic function and geometry free combination of GPS carrier phase and pseudo-range code observations and weighted least square were applied to solve observation equations, to improve estimation of IBs values. There are many factors affecting estimated value of IBs. The premier factor is the observations weighting function which relying on the satellite elevation angle. The second factor concerned with estimating IBs using single GPS Station Precise Point Positioning (PPP) or using GPS network. The third factor is the number of GPS receivers in the network. Results from MSIBE were evaluated and compared with data from IAAC and other codes like M_DCB and ZDDCBE. The results of weighted (MSIBE) least square shows an improvement for estimated IBs, where mean differences from CODE less than 0.746 ns. IBs estimated from Continuous Operating Receivers (CORs) GPS network shows a good agreement with IAAC than IBs estimated from PPP where the mean differences are less than 0.1477 ns and 1.1866 ns, respectively. The mean differences of computed IBs improved by increasing number of GPS stations in the network.

Tags

Nutzer

  • @cscjournals

Kommentare und Rezensionen