Bayesian Methods for Hackers : An intro to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view.
Stan modeling language and C++ library for Bayesian inference. NUTS adaptive HMC (MCMC) sampling, automatic differentiation, R, shell interfaces. Gelman.
A. Kendall, and Y. Gal. Proceedings of the 31st International Conference on Neural Information Processing Systems, page 5580–5590. Red Hook, NY, USA, Curran Associates Inc., (2017)
F. Lemmerich, M. Becker, P. Singer, D. Helic, A. Hotho, and M. Strohmaier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, page 965--974. ACM, (2016)
K. Shridhar, F. Laumann, and M. Liwicki. (2019)cite arxiv:1901.02731Comment: arXiv admin note: text overlap with arXiv:1506.02158, arXiv:1703.04977 by other authors.
S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, page 452--461. Arlington, Virginia, United States, AUAI Press, (2009)
J. Wang, Y. Zhang, C. Posse, and A. Bhasin. Proceedings of the 22nd international conference on World Wide Web, page 1377--1388. International World Wide Web Conferences Steering Committee, (2013)