Changes to network structure can substantially affect when and how widely new ideas, products, and conventions are adopted. In models of biological contagion, interventions that randomly rewire edges (making them "longer") accelerate spread. However, there are other models relevant to social contagion, such as those motivated by myopic best-response in games with strategic complements, in which individual's behavior is described by a threshold number of adopting neighbors above which adoption occurs (i.e., complex contagions). Recent work has argued that highly clustered, rather than random, networks facilitate spread of these complex contagions. Here we show that minor modifications of prior analyses, which make them more realistic, reverse this result. The modification is that we allow very rarely below threshold adoption, i.e., very rarely adoption occurs, where there is only one adopting neighbor. To model the trade-off between long and short edges we consider networks that are the union of cycle-power-$k$ graphs and random graphs on $n$ nodes. We study how the time to global spread changes as we replace the cycle edges with (random) long ties. Allowing adoptions below threshold to occur with order $1/n$ probability is enough to ensure that random rewiring accelerates spread. Simulations illustrate the robustness of these results to other commonly-posited models for noisy best-response behavior. We then examine empirical social networks, where we find that hypothetical interventions that (a) randomly rewire existing edges or (b) add random edges reduce time to spread compared with the original network or addition of "short", triad-closing edges, respectively. This substantially revises conclusions about how interventions change the spread of behavior, suggesting that those wanting to increase spread should induce formation of long ties, rather than triad-closing ties.


Long ties accelerate noisy threshold-based contagions

Links and resources

BibTeX key:
search on:

Comments and Reviews  

There is no review or comment yet. You can write one!


Cite this publication