Anderson localization is a regime in which diffusion is inhibited and waves (also electromagnetic waves) get localized. Here we exploit adaptive optics to achieve focusing in disordered optical fibres in the Anderson regime. By wavefront shaping and optimization, we observe the generation of a propagation-invariant beam, where light is trapped transversally by disorder, and show that Anderson localizations can be also excited by extended speckled beams. We demonstrate that disordered fibres allow a more efficient focusing action with respect to standard fibres in a way independent of their length, because of the propagation-invariant features and cooperative action of transverse localizations.

Links and resources

BibTeX key:
search on:

Comments and Reviews  

There is no review or comment yet. You can write one!


Cite this publication