Abstract

Several of NASA missions (TESS, JWST, WFIRST, etc.) and mission concepts (LUVOIR, HabEx, and OST) emphasize the exploration and characterization of exoplanets, and the study of the interstellar medium. We anticipate that a much broader set of chemical environments exists on exoplanets, necessitating data from a correspondingly broader set of chemical reactions. Similarly, the conditions that exist in astrophysical environments are very different from those traditionally probed in laboratory chemical kinetics studies. These are areas where quantum mechanical theory, applied to important reactions via well-validated chemical kinetics models, can fill a critical knowledge gap. Quantum chemical calculations are also introduced to study interior of planets, photochemical escape, and many critical chemical pathways (e.g. prebiotic environments, contaminations, etc.) After years of development of the relevant quantum chemical theories and significant advances in computational power, quantum chemical simulations have currently matured enough to describe real systems with an accuracy that competes with experiments. These approaches, therefore, have become the best possible alternative in many circumstances where performing experiments is too difficult, too expensive, or too dangerous, or simply not possible. In this white paper, several existing quantum chemical studies supporting exoplanetary science, planetary astronomy, and astrophysics are described, and the potential positive impacts of improved models associated with scientific goals of missions are addressed. In the end, a few recommendations from the scientific community to strengthen related research efforts at NASA are provided.

Description

Impacts of Quantum Chemistry Calculations on Exoplanetary Science, Planetary Astronomy, and Astrophysics

Links and resources

URL:
BibTeX key:
kao2019impacts
search on:

Comments and Reviews  
(0)

There is no review or comment yet. You can write one!

Tags


Cite this publication