Misc,

Constraints on the evolution of the relationship between HI mass and halo mass in the last 12 Gyr

, and .
(2016)cite arxiv:1608.00007Comment: 10 pages; 8 figures; 1 table.

Abstract

The neutral hydrogen (HI) content of dark matter haloes forms an intermediate state in the baryon cycle that connects the hot shock-heated gas and cold star-forming gas in haloes. Measurement of the relationship between HI mass and halo mass therefore puts important constraints on galaxy formation models. We combine radio observations of HI in emission at low redshift ($z0$) with optical/UV observations of HI in absorption at high redshift ($1<z<4$) to derive constraints on the evolution of the HI-mass halo-mass (HIHM) relation from redshift $z=4$ to $z=0$. We model the evolution of the HIHM relation in a manner similar to that of the stellar-halo mass (SHM) relation. Combining this parameterisation with a redshift- and mass-dependent modified Navarro-Frenk-White (NFW) profile for the HI density within a halo, we draw constraints on the evolution of the HIHM relation from the observed HI column density, incidence rate, and clustering bias at high redshift. We find that the peak HI mass fraction moderately increases from 1% at $z=0$ to about 3.1% at $z=4$. The corresponding halo mass increases from $10^11.7$ M$_ødot$ to $10^12.4$ M$_ødot$. The data do not suggest a strong evolution in the HI density profile. Predictions of this model are in excellent agreement with the observed column density distribution and incidence rate of high-column-density HI absorption-line systems at high redshift, although the agreement is poor with the column density distribution at $z=0$. The increase in the halo mass with maximum HI mass fraction also enables the model predictions to successfully match the measured clustering bias of high column density HI systems at $z=2.3$. We discuss the resultant evolution of the HIHM relation and its consequences for HI and galaxy evolution. Abridged Abstract

Tags

Users

  • @miki

Comments and Reviews