Article,

Flagellated ectosymbiotic bacteria propel a eucaryotic cell

.
Journal of Cell Biology, 94 (3): 697-709 (September 1982)

Abstract

A devescovinid flagellate from termites exhibits rapid gliding movements only when in close contact with other cells or with a substrate. Locomotion is powered not by the cell's own flagella nor by its remarkable rotary axostyle, but by the flagella of thousands of rod bacteria which live on its surface. That the ectosymbiotic bacteria actually propel the protozoan was shown by the following: (a) the bacteria, which lie in specialized pockets of the host membrane, bear typical procaryotic flagella on their exposed surface; (b) gliding continues when the devescovinid's own flagella and rotary axostyle are inactivated; (c) agents which inhibit bacterial flagellar motility, but not the protozoan's motile systems, stop gliding movements; (d) isolated vesicles derived from the surface of the devescovinid rotate at speeds dependent on the number of rod bacteria still attached; (e) individual rod bacteria can move independently over the surface of compressed cells; and (f) wave propagation by the flagellar bundles of the ectosymbiotic bacteria is visualized directly by video-enhanced polarization microscopy. Proximity to solid boundaries may be required to align the flagellar bundles of adjacent bacteria in the same direction, and/or to increase their propulsive efficiency (wall effect). This motility-linked symbiosis resembles the association of locomotory spirochetes with the Australian termite flagellate Mixotricha (Cleveland, L. R., and A. V. Grimstone, 1964, Proc. R. Soc. Lond. B Biol. Sci., 159:668-686), except that in our case propulsion is provided by bacterial flagella themselves. Since bacterial flagella rotate, an additional novelty of this system is that the surface bearing the procaryotic rotary motors is turned by the eucaryotic rotary motor within.

Tags

Users

  • @quantentunnel

Comments and Reviews