Article,

FPGA-based low-cost synchronized fiber network for experimental setups in space

, , and .
Journal of Instrumentation, 16 (11): P11016 (November 2021)
DOI: 10.1088/1748-0221/16/11/p11016

Abstract

Custom experiment setups in physics often require control electronics to execute actions and measurements on a small time scale. When further constraints limit the experiment's environment, for example when the experiment is inside a sounding rocket, conventional network systems will not suffice those constraints because of weight, heat or budget limitations. This paper proposes a network architecture with a time resolution of less than 1 ns over a pair of plastic fibers while using low-cost commercial hardware. The plastic fibers in comparison to copper fibers have a low weight and additionally can isolate parts of the setup galvanically. Data rates of 40 Mbit s-1 enable the network to transfer large amounts of measurements and configuration data over the network. Proof-of-concept implementations of network endpoints and switches on small FPGAs are analyzed in terms of synchronicity, data rate and resource usage. Using commercial parts the resolution of 1 ns is reached with a standard deviation of less than 100 ps. Compared to a copper wire implementation the weight is reduced by about one order of magnitude. With its low weight at a low cost, the network is useful in space or laboratory setups which require high time resolution.

Tags

Users

  • @imsl3s

Comments and Reviews