Article,

Structural studies of calcium phosphate doped with titanium and zirconium obtained by high-energy mechanical alloying

, and .
PHYSICA SCRIPTA, (2009)
DOI: 10.1088/0031-8949/80/06/065801

Abstract

In this paper, we present a new variation of the solid-state procedure on the synthesis of bioceramics with titanium (CapTi) and zirconium (CapZr), considering that zirconium (ZrO2) and titanium oxide (TiO2) are strengthening agents, due to their superb force and fracture toughness. The high efficiency of the calcination process opens a new way of producing commercial amounts of nanocrystalline bioceramics. In this work, a new variation of the solid-state procedure method was used to produce nanocrystalline powders of titanium and zirconium, using two different experimental chemical routes: CapTi: Ca(H2PO4)(2) + TiO2 and CapZr: Ca(H2PO4)(2) + ZrO2. The powders were submitted to calcination processes (CapTic and CapZrc) at 800, 900 and 1000 degrees C. The calcium titanium phosphate phase, CaTi4P6O24, was obtained in the CapTic reaction and the calcium zirconium phosphate, CaZr4P6O24, was obtained in the CapZrc reaction. The obtained ceramics were characterized by x-ray powder diffraction (XRD), infrared (IR) spectroscopy, Raman scattering spectroscopy (RSS) and scanning electron microscopy (SEM) analysis. This method was compared with the milling process (CapTim and CapZrm), where in the last process the melting is not necessary and the powder obtained is nanocrystalline. The calcium titanium phosphate phase, CaTi4P6O24, was obtained in the reaction CapTim, but in CapZrm the formation of any calcium phosphate phase even after 15 h of dry mechanical alloying was not observed.

Tags

Users

  • @ppgfis_ufc_br

Comments and Reviews