Article,

Coupling earth system and integrated assessment models: the problem of steady state

, , , , , , , , and .
Geoscientific Model Development Discussions, 7 (1): 1499--1524 (Feb 27, 2014)
DOI: 10.5194/gmdd-7-1499-2014

Abstract

Human activities are significantly altering biogeochemical cycles at the global scale, posing a significant problem for earth system models (ESMs), which may incorporate static land-use change inputs but do not actively simulate policy or economic forces. One option to address this problem is to couple an ESM with an economically oriented integrated assessment model. Here we have implemented and tested a coupling mechanism between the carbon cycles of an ESM (CESM, the Community Earth System Model) and an integrated assessment (GCAM) model, examining the best proxy variables to share between the models, and quantifying our ability to distinguish climate- and land-use-driven flux changes. The net primary production and heterotrophic respiration outputs of the Community Land Model (CLM), the land component of CESM, were found to be the most robust proxy variables by which to manipulate GCAM's assumptions of long-term ecosystem steady state carbon, with short-term forest production strongly correlated with long-term biomass changes in climate-change model runs. Carbon-cycle effects of anthropogenic land-use change are short-term and spatially limited relative to widely distributed climate effects, and as a result we were able to distinguish these effects successfully in the model coupling, passing only the latter to GCAM. By allowing climate effects from a full earth system model to dynamically modulate the economic and policy decisions of an integrated assessment model, this work provides a foundation for linking these models in a robust and flexible framework capable of examining two-way interactions between human and earth system processes.

Tags

Users

  • @pbett

Comments and Reviews