@pharmawuerz

G Protein activation without subunit dissociation depends on a Galpha(i)-specific region

, , , and . J Biol Chem, 280 (26): 24584-90 (July 2005)Frank, Monika Thumer, Leonore Lohse, Martin J Bunemann, Moritz United States The Journal of biological chemistry J Biol Chem. 2005 Jul 1;280(26):24584-90. Epub 2005 May 2..

Abstract

G proteins transmit a variety of extracellular signals into intracellular responses. The Galpha and Gbetagamma subunits are both known to regulate effectors. Interestingly, the Galpha subunit also determines subtype specificity of Gbetagamma effector interactions. However, in light of the common paradigm that Galpha and Gbetagamma subunits dissociate during activation, a plausible mechanism of how this subtype specificity is generated was lacking. Using a fluorescence resonance energy transfer (FRET)-based assay developed to directly measure mammalian G protein activation in intact cells, we demonstrate that fluorescent Galpha(i1,2,3), Galpha(z), and Gbeta(1)gamma(2) subunits do not dissociate during activation but rather undergo subunit rearrangement as indicated by an activation-induced increase in FRET. In contrast, fluorescent Galpha(o) subunits exhibited an activation-induced decrease in FRET, reflecting subunit dissociation or, alternatively, a distinct subunit rearrangement. The alpha(B/C)-region within the alpha-helical domain, which is much more conserved within Galpha(i1,2,3) and Galpha(z) as compared with that in Galpha(o), was found to be required for exhibition of an activation-induced increase in FRET between fluorescent Galpha and Gbetagamma subunits. However, the alpha(B/C)-region of Galpha(il) alone was not sufficient to transfer the activation pattern of Galpha(i) to the Galpha(o) subunit. Either residues in the first 91 amino acids or in the C-terminal remainder (amino acids 93-354) of Galpha(il) together with the alpha(B/C)-helical region of Galpha(i1) were needed to transform the Galpha(o)-activation pattern into a Galpha(i1)-type of activation. The discovery of subtype-selective mechanisms of G protein activation illustrates that G protein subfamilies have specific mechanisms of activation that may provide a previously unknown basis for G protein signaling specificity.

Links and resources

Tags