This book presents a formulation of probability theory that incorporates improper priors. Whereas de Finetti relaxes the assumption of countable additivity, Hartigan dispenses with the unitary requirement.
Пожалуйста, войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)
Цитировать эту публикацию
%0 Book
%1 hartigan1983
%A Hartigan, J. A.
%B Springer Series in Statistics
%C New York
%D 1983
%I Springer-Verlag
%K
%P xii+145
%T Bayes theory
%@ 0-387-90883-8
@book{hartigan1983,
added-at = {2010-03-25T16:34:46.000+0100},
address = {New York},
author = {Hartigan, J. A.},
biburl = {https://www.bibsonomy.org/bibtex/262a30e5953ba2530cb796e882a748b03/3mta3},
interhash = {cec460abc157d0d661bf0172a0d529f2},
intrahash = {62a30e5953ba2530cb796e882a748b03},
isbn = {0-387-90883-8},
keywords = {},
mrclass = {60A05 (62A15)},
mrnumber = {MR715782 (85k:60008)},
mrreviewer = {Anthony O'Hagan},
pages = {xii+145},
publisher = {Springer-Verlag},
review = {This book presents a formulation of probability theory that incorporates improper priors. Whereas de Finetti relaxes the assumption of countable additivity, Hartigan dispenses with the unitary requirement.},
series = {Springer Series in Statistics},
timestamp = {2010-03-25T16:34:46.000+0100},
title = {Bayes theory},
year = 1983
}