Abstract

Cellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the metabolic states of individual cells, the surrounding tissue and the whole organism are simultaneously considered. We here present an approach relying on dynamic flux balance analysis that allows the integration of metabolic networks at the cellular scale into standardized physiologically-based pharmacokinetic models at the whole-body level. To evaluate our approach we integrated a genome-scale network reconstruction of a human hepatocyte into the liver tissue of a physiologically-based pharmacokinetic model of a human adult. The resulting multiscale model was used to investigate hyperuricemia therapy, ammonia detoxification and paracetamol-induced toxication at a systems level. The specific models simultaneously integrate multiple layers of biological organization and offer mechanistic insights into pathology and medication. The approach presented may in future support a mechanistic understanding in diagnostics and drug development. Cellular metabolism is a key element in human physiology. Ideally the metabolic network needs to be considered within the context of the surrounding tissue and organism since the various levels of biological organization are mutually influencing each other. To mechanistically describe the interplay between intracellular space and extracellular environment, we here integrate the genome-scale metabolic network model HepatoNet1 at the cellular scale into physiologically-based pharmacokinetic models at the whole-body level. The resulting multiscale model allows the quantitative description of metabolic behavior in the context of time-resolved metabolite concentration profiles in the body and the surrounding liver tissue. The model has been applied to three case studies covering fundamental aspects of medicine and pharmacology: drug administration, biomarker identification and drug-induced toxication. Most notably, our multiscale approach fosters an improved quantitative understanding of drug action and the impact of metabolic disorders at an organism level, based on a genome-scale representation of cellular metabolism. Computational models such as the one presented include various aspects of human physiology and may therefore significantly support rational approaches in medical diagnostics and pharmaceutical drug development in the future.

Links and resources

Tags

community

  • @karthikraman
  • @dblp
@karthikraman's tags highlighted