Abstract

The AGATA and GRETA spectrometers are large arrays of highly segmented HPGe detectors that use the technique of gamma ray tracking to reconstruct the scattering path of gamma rays interacting within the active material. A basic requirement is a precise reconstruction of the individual interaction locations within the detectors. This is possible through the use of pulse shape analysis which has to be conducted in real time due to the high data rates generated by the spectrometer. The methodologies that have been evaluated to perform this for AGATA are discussed along with the approaches used to calculate the pulse shape databases required by these algorithms. Finally, the performance and limitations of the existing approaches are reviewed.

Links and resources

Tags