Article,

Design and Implementation of Discrete Augmented Ziegler-Nichols PID Controller

, and .
ACEEE Int. J. on Control System and Instrumentation, (February 2013)

Abstract

Although designing and tuning a proportional- integral-derivative (PID) controller appears to be conceptually intuitive, but it can be hard in practice, if multiple (and often conflicting) objectives such as short transient and high stability are to be achieved. Traditionally Ziegler Nichols is widely accepted PID tuning method but it’s performance is not accepted for systems where precise control is required. To overcome this problem, the online gain updating method Augmented Ziegler-Nichols PID (AZNPID) was proposed, with the amelioration of Ziegler-Nichols PID’s (ZNPID’s) tuning rule. This study is further extension of 1 for making the scheme more generalized. With the help of fourth order Runge-Kutta method, differential equations involved in PID are solved which significantly improves transient performance of AZNPID compared to ZNPID. The proposed augmented ZNPID (AZNPID) is tested on various types of linear processes and shows improved performance over ZNPID. The results of the proposed scheme is validated by simulation and also verified experimentally by implementing on Quanser’s real time servo-based position control system SRV-02.

Tags

Users

  • @ideseditor

Comments and Reviews