@nilsma

A Rayleigh wave back-projection method applied to the 2011 Tohoku earthquake

, , and . Geophysical Research Letters, 39 (2): L02302+ (Jan 18, 2012)
DOI: 10.1029/2011GL050183

Abstract

We study the rupture process of the 2011 Tohoku megathrust by analyzing 384 regional strong-motion records using a novel back-projection method for Rayleigh waves with periods between 13 and 100 s. The proposed approach is based on isolating the signal at the selected period with a continuous wavelet transform, and generating the stack using arrival times predicted from detailed fundamental mode Rayleigh wave group velocity maps. We verify the method by back-projecting synthetic time series representing a point source off the coast of Tohoku, which we generate with a 3D finite difference method and a mesh based on the Japan Integrated Velocity Structure Model. Application of the method to K-NET/KiK-net records of the Mw 9.1 Tohoku earthquake reveals several Rayleigh wave emitters, which we attribute to different stages of rupture. Stage 1 is characterized by slow rupture down-dip from the hypocenter. The onset of stage 2 is marked by energetic Rayleigh waves emitted from the region between the JMA hypocenter and the trench within 60 s after hypocentral time. During stage 3 the rupture propagates bilaterally towards the north and south at rupture velocities between 3 and 3.5 km/s, reaching Iwate-oki 65 s and Ibaraki-oki 105 s after nucleation. In contrast to short-period back-projections from teleseismic P-waves, which place radiation sources below the Honshu coastline, Rayleigh wave emitters identified from our long-period back-projection are located 50-100 km west of the trench. This result supports the interpretation of frequency-dependent seismic wave radiation as suggested in previous studies.

Links and resources

Tags