@fdiehl

Encoding of muscle movement on two time scales by a sensory neuron that switches between spiking and bursting modes

, , , and . J Neurophys, 82 (5): 2786--97 (November 1999)

Abstract

The gastropyloric receptor (GPR) neurons of the stomatogastric nervous system of the crab Cancer borealis are muscle stretch receptors that can fire in either a spiking or a bursting mode of operation. Our goal is to understand what features of muscle stretch are encoded by these two modes of activity. To this end, we characterized the responses of the GPR neurons in both states to sustained and rapidly varying imposed stretches. The firing rates of spiking GPR neurons in response to rapidly varying stretches were directly related to stretch amplitude. For persistent stretches, spiking-mode firing rates showed marked adaptation indicating a more complex relationship. Interspike intervals of action potentials fired by GPR neurons in the spiking mode were used to construct an accurate estimate of the time-dependent amplitude of stretches in the frequency range of the gastric mill rhythm (0.05-0.2 Hz). Spike trains arising from faster stretches (similar to those of the pyloric rhythm) were decoded using a linear filter to construct an estimate of stretch amplitude. GPR neurons firing in the bursting mode were relatively unaffected by rapidly varying stretches. However, the burst rate was related to the amplitude of long, sustained stretches, and very slowly varying stretches could be reconstructed from burst intervals. In conclusion, the existence of spiking and bursting modes allows a single neuron to encode both rapidly and slowly varying stimuli and thus to report cycle-by-cycle muscle movements as well as average levels of muscle tension.

Description

bib-komplett

Links and resources

Tags