BibSonomy

The blue social bookmark and publication sharing system.

( en | de | ru )

 

publication
  • tag
  • user
  • group
  • author
  • concept
  • BibTeX key
  • search
  • sign in
  • register
  • groups
  • genealogy
  • popular 
    • posts
    • tags
    • authors
    • concepts
    • discussions
  • sign in
  • register

Login

Log in with your username.

@

I've lost my password.


Log in with your OpenID-Provider.

  • Other OpenID-Provider
  1. user
  2. @kirk86
  3. Why and When Can Deep-...

Publication title

@kirk86

copydeleteadd this publication to your clipboard
  • community post
  • history of this post
  • URL
  • DOI
  • BibTeX
  • EndNote
  • APA
  • Chicago
  • DIN 1505
  • Harvard
  • MSOffice XML
Why and When Can Deep-but Not Shallow-networks Avoid the Curse of Dimensionality: A Review

T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao. (2017)

Description

IJAC-2016-11-271.dvi

Links and resources

BibTeX key
noauthororeditor
entry type
article
year
2017
Document
http://cbmm.mit.edu/sites/default/files/publications/art%253A10.1007%252Fs11633-017-1054-2.pdf

Tags

  • bounds
  • complexity
  • generalization
  • learning
  • probability
  • sampling
  • stable
  • stats
  • theory

Cite this publication

More citation styles
- please select -

%0 Journal Article %1 noauthororeditor %A Poggio, Tomaso %A Mhaskar, Hrushikesh %A Rosasco, Lorenzo %A Miranda, Brando %A Liao, Qianli %D 2017 %K bounds complexity generalization learning probability sampling stable stats theory %T Why and When Can Deep-but Not Shallow-networks Avoid the Curse of Dimensionality: A Review %U http://cbmm.mit.edu/sites/default/files/publications/art%253A10.1007%252Fs11633-017-1054-2.pdf
@article{noauthororeditor, added-at = {2019-05-24T12:05:48.000+0200}, author = {Poggio, Tomaso and Mhaskar, Hrushikesh and Rosasco, Lorenzo and Miranda, Brando and Liao, Qianli}, biburl = {https://www.bibsonomy.org/bibtex/2788c315007e3b5f933c76c4483ea3cfe/kirk86}, description = {IJAC-2016-11-271.dvi}, interhash = {99e38247d0adfb5f03c3fb72f78d657e}, intrahash = {788c315007e3b5f933c76c4483ea3cfe}, keywords = {bounds complexity generalization learning probability sampling stable stats theory}, timestamp = {2019-05-24T12:05:48.000+0200}, title = {Why and When Can Deep-but Not Shallow-networks Avoid the Curse of Dimensionality: A Review}, url = {http://cbmm.mit.edu/sites/default/files/publications/art%253A10.1007%252Fs11633-017-1054-2.pdf}, year = 2017 }

search on

Google ScholarDNBWorldCatBASE

Meta data

  • Last update 6 years ago
  • Created 6 years ago

Comments and Reviews  
(0)

There is no review or comment yet. You can write one!
What is BibSonomy?
Getting Started
Browser Buttons
Help
Developer
Overview
API Documentation
Contact & Privacy
Contact
Privacy & Terms of Use
Cookies
Report Issues
BibSonomy Wiki
Integration
PUMA
TYPO3 Extension
WordPress Plugin
Java REST Client
Supported Sites
more
About BibSonomy
Team
Blog
Mailing List
Social Media
 Follow us on Twitter

BibSonomy is offered by the Data Science Chair of the University of Würzburg, the Information Processing and Analytics Group of the Humboldt-Unversität zu Berlin, the KDE Group of the University of Kassel, and the L3S Research Center.