Abstract

Author summary Plants have evolved mechanisms to cope with complex environments in which resources as well as potential threats are fluctuating. Thereby, plants modulate their growth based on multiple cues from the environment. In this study, by exploring natural genetic variation in Arabidopsis to study the role of zinc in regulating primary root length, we find a major locus governing this is the AZELAIC ACID INDUCED (AZI1) locus, previously known to be involved in systemic acquired resistance. We then showed that regulatory variation at AZI1 contributes significantly to this natural variation. Importantly, the known AZI1 function led us to show that there is an interaction of zinc deficiency and the defence pathway. While the studies of the roles of the defence signal AzA and AZI1 had been restricted to the aboveground tissues, we clearly showed an important role of this pathway in the root, which is zinc-dependant. Our observations regarding the interaction of zinc and AzA-dependent defence pathways on root growth are not a fluke of evolution, but they are evolutionary conserved between dicots and monocots. Taken together, these results will serve as a basis to design new strategies for improvement agricultural crop species able to modulate growth and defence.

Links and resources

Tags