Abstract

Recent research has demonstrated that consumption of food -especially fruits and vegetables- can alter the effects of drugs by interfering either with their pharmacokinetic or pharmacodynamic processes. Despite the recognition of such drug-food associations as an important element for successful therapeutic interventions, a systematic approach for identifying, predicting and preventing potential interactions between food and marketed or novel drugs is not yet available. The overall objective of this work was to sketch a comprehensive picture of the interference of \~ 4,000 dietary components present in \~1800 plant-based foods with the pharmacokinetics and pharmacodynamics processes of medicine, with the purpose of elucidating the molecular mechanisms involved. By employing a systems chemical biology approach that integrates data from the scientific literature and online databases, we gained a global view of the associations between diet and dietary molecules with drug targets, metabolic enzymes, drug transporters and carriers currently deposited in DrugBank. Moreover, we identified disease areas and drug targets that are most prone to the negative effects of drug-food interactions, showcasing a platform for making recommendations in relation to foods that should be avoided under certain medications. Lastly, by investigating the correlation of gene expression signatures of foods and drugs we were able to generate a completely novel drug-diet interactome map. Vegetables and fruits that are otherwise considered beneficial to our health can have serious consequences in medical care. Interference of plant-based foods with drug performance and pharmacological activity may potentially contribute to an increased risk of side effects or treatment failure. A well-known example of a drug-food interaction, the inhibitory effect of grapefruit juice on cytochrome P450, results in increased bioavailability of drugs such as felodipine, cyclosporine and saquinavir, which could lead to drug toxicity and poisoning. Although the importance of drug-food interactions has long been known, a systematic approach to identify, predict and prevent potential interactions between food and drugs has not yet been established. This work sets the ground for the understanding of the key molecular mechanisms of drug-food interactions with the scope to optimize therapeutic strategies and improve patient care. We tackle this problem using NutriChem, a database we have recently developed with information from the scientific literature and online databases related to natural compound origin and bioactivity. This systems chemical biology approach provides the basis for the identification and study of the substances in plant-based foods that affect the human proteins that are relevant for the pharmacokinetics and pharmacodynamics of current medicine.

Links and resources

Tags

community

  • @karthikraman
  • @dblp
@karthikraman's tags highlighted