@itc

Distributed and Adaptive Routing based on Game Theory

, and . 29th International Teletraffic Congress (ITC 29), Genoa, Italy, (2017)

Abstract

In this paper, we present a new adaptive multi-flow routing algorithm to select end-to-end paths in packet-switched networks. This algorithm provides provable optimality guarantees in the following game theoretic sense: The network configuration converges to a configuration arbitrarily close to a pure Nash equilibrium. In this context, a Nash equilibrium is a configuration in which no flow can improve its end-to-end delay by changing its network path. This algorithm has several robustness properties making it suitable for real-life usage: it is robust to measurement errors, outdated information, and clocks desynchronization. Furthermore, it is only based on local information and only takes local decisions, making it suitable for a distributed implementation. Our SDN-based proof-of-concept is built as an Openflow controller. We set up an emulation platform based on Mininet to test the behavior of our proof-of-concept implementation in several scenarios. Although real-world conditions do not conform exactly to the theoretical model, all experiments exhibit satisfying behavior, in accordance with the theoretical predictions.

Links and resources

Tags

community

  • @itc
  • @dblp
@itc's tags highlighted