@ursg

Sparse Grids for the Vlasov--Poisson Equation

, and . Sparse Grids and Applications - Stuttgart 2014, page 163--190. Cham, Springer International Publishing, (2016)

Abstract

The Vlasov--Poisson equation models the evolution of a plasma in an external or self-consistent electric field. The model consists of an advection equation in six dimensional phase space coupled to Poisson's equation. Due to the high dimensionality and the development of small structures the numerical solution is quite challenging. For two or four dimensional Vlasov problems, semi-Lagrangian solvers have been successfully applied. Introducing a sparse grid, the number of grid points can be reduced in higher dimensions. In this paper, we present a semi-Lagrangian Vlasov--Poisson solver on a tensor product of two sparse grids. In order to defeat the problem of poor representation of Gaussians on the sparse grid, we introduce a multiplicative delta-f method and separate a Gaussian part that is then handled analytically. In the semi-Lagrangian setting, we have to evaluate the hierarchical surplus on each mesh point. This interpolation step is quite expensive on a sparse grid due to the global nature of the basis functions. In our method, we use an operator splitting so that the advection steps boil down to a number of one dimensional interpolation problems. With this structure in mind we devise an evaluation algorithm with constant instead of logarithmic complexity per grid point. Results are shown for standard test cases and in four dimensional phase space the results are compared to a full-grid solution and a solution on the four dimensional sparse grid.

Links and resources

Tags