Abstract

Training large neural networks requires distributing learning across multiple workers, where the cost of communicating gradients can be a significant bottleneck. signSGD alleviates this problem by transmitting just the sign of each minibatch stochastic gradient. We prove that it can get the best of both worlds: compressed gradients and SGD-level convergence rate. signSGD can exploit mismatches between L1 and L2 geometry: when noise and curvature are much sparser than the gradients, signSGD is expected to converge at the same rate or faster than full-precision SGD. Measurements of the L1 versus L2 geometry of real networks support our theoretical claims, and we find that the momentum counterpart of signSGD is able to match the accuracy and convergence speed of Adam on deep Imagenet models. We extend our theory to the distributed setting, where the parameter server uses majority vote to aggregate gradient signs from each worker enabling 1-bit compression of worker-server communication in both directions. Using a theorem by Gauss, we prove that the non-convex convergence rate of majority vote matches that of distributed SGD. Thus, there is great promise for sign-based optimisation schemes to achieve both communication efficiency and high accuracy.

Description

signSGD: compressed optimisation for non-convex problems

Links and resources

Tags

community

  • @jk_itwm
  • @dblp
@jk_itwm's tags highlighted