Article,

Unraveling exciton–phonon coupling in individual FAPbI3 nanocrystals emitting near-infrared single photons

, , , , , , and .
Nature Communications, 9 (1): 3318-- (2018)
DOI: 10.1038/s41467-018-05876-0

Abstract

Formamidinium lead iodide (FAPbI3) exhibits the narrowest bandgap energy among lead halide perovskites, thus playing a pivotal role for the development of photovoltaics and near-infrared classical or quantum light sources. Here, we unveil the fundamental properties of FAPbI3 by spectroscopic investigations of nanocrystals of this material at the single-particle level. We show that these nanocrystals deliver near-infrared single photons suitable for quantum communication. Moreover, the low temperature photoluminescence spectra of FAPbI3 nanocrystals reveal the optical phonon modes responsible for the emission line broadening with temperature and a vanishing exciton–acoustic phonon interaction in these soft materials. The photoluminescence decays are governed by thermal mixing between fine structure states, with a two-optical phonon Raman scattering process. These results point to a strong Frölich interaction and to a phonon glass character that weakens the interactions of charge carriers with acoustic phonons and thus impacts their relaxation and mobility in these perovskites.

Tags

Users

  • @bretschneider_m

Comments and Reviews