Article,

Electrodiffusion of ions approaching the mouth of a conducting membrane channel.

, and .
Biophys. J., 53 (6): 863--875 (June 1988)

Abstract

The movement of ions in the aqueous medium as they approach the mouth (radius a) of a conducting membrane channel is analyzed. Starting with the Nernst-Planck and Poisson equations, we derive a nonlinear integrodifferential equation for the electric potential, phi(r), a less than or equal to r less than infinity. The formulation allows deviations from charge neutrality and dependence of phi(r) on ion flux. A numerical solution is obtained by converting the equation to an integral equation that is solved by an iterative method for an assumed mouth potential, combined with a shooting method to adjust the mouth potential until the numerical solution agrees with an asymptotic expansion of the potential at r-a much greater than lambda (lambda = Debye length). Approximate analytic solutions are obtained by assuming charge neutrality (L�uger, 1976) and by linearizing. The linear approximation agrees with the exact solution under most physiological conditions, but the charge-neutrality solution is only valid for r much greater than lambda and thus cannot be used unless a much greater than lambda. Families of curves of ion flux vs. potential drop across the electrolyte, phi(infinity)-phi (a), and of permeant ion density at the channel mouth, n1(a), vs. flux are obtained for different values of a/lambda and S = a d phi/dr(a). If a much greater than lambda and S = O, the maximum flux (which is approached when n1(a)----0) is reduced by 50\% compared to the value predicted by the charge-neutrality solution. Access resistance is shown to be a factor a/2 (a + lambda) times the published formula (Hille, 1968), which was derived without including deviations from charge neutrality and ion density gradients and hence does not apply when there is no counter-ion current. The results are applied to an idealized diffusion-limited channel with symmetric electrolytes. For S = O, the current/voltage curves saturate at a value dependent on a/lambda; for S greater than O, they increase linearly for large voltage.

Tags

Users

  • @hake

Comments and Reviews