Abstract
The octonions are the largest of the four normed division algebras. While
somewhat neglected due to their nonassociativity, they stand at the crossroads
of many interesting fields of mathematics. Here we describe them and their
relation to Clifford algebras and spinors, Bott periodicity, projective and
Lorentzian geometry, Jordan algebras, and the exceptional Lie groups. We also
touch upon their applications in quantum logic, special relativity and
supersymmetry.
Users
Please
log in to take part in the discussion (add own reviews or comments).