Article,

A lumped-parameter model of the cerebrospinal system for investigating arterial-driven flow in posttraumatic syringomyelia

, , and .
Medical Engineering & Physics, 33 (7): 874--882 (Sep 15, 2011)
DOI: 10.1016/j.medengphy.2010.07.009

Abstract

Fluid transport in syringomyelia has remained enigmatic ever since the disease was first identified some three centuries ago. However, accumulating evidence in the last decade from animal studies implicates arterial pulsations in syrinx formation. In particular, it has been suggested that a phase difference between the pressure pulse in the spinal subarachnoid space and the perivascular spaces, due to a pathologically disturbed cerebrospinal fluid (CSF) or blood supply, could result in a net influx of CSF into the spinal cord (SC). A lumped-parameter model is developed of the cerebrospinal system to investigate this conjecture. It is found that although this phase-lag mechanism may operate, it requires the SC to have an intrinsic storage capacity due to the collapsibility of the contained venous reservoir. This net flux is associated with a higher mean pressure in the SC than the SSS which is maintained in the periodic steady state. According to our simulations the mechanical perturbations of arachnoiditis exacerbate the phase-lag effect, which may be partially alleviated by the presence of a posttraumatic syrinx and more completely by a syringo-subarachnoid shunt.

Tags

Users

  • @gdmcbain

Comments and Reviews