The Experiment is just as Important as the Likelihood in Understanding the Prior: a Cautionary Note on Robust Cognitive Modeling
, , and .
Computational Brain & Behavior 2 (3): 210--217 (Dec 1, 2019)

Cognitive modeling shares many features with statistical modeling, making it seem trivial to borrow from the practices of robust Bayesian statistics to protect the practice of robust cognitive modeling. We take one aspect of statistical workflow---prior predictive checks---and explore how they might be applied to a cognitive modeling task. We find that it is not only the likelihood that is needed to interpret the priors, we also need to incorporate experiment information as well. This suggests that while cognitive modeling might borrow from statistical practices, especially workflow, care must be taken to make the necessary adaptions.
  • @kirk86
This publication has not been reviewed yet.

rating distribution
average user rating0.0 out of 5.0 based on 0 reviews
    Please log in to take part in the discussion (add own reviews or comments).