Abstract
We introduce a new algorithm named WGAN, an alternative to traditional GAN
training. In this new model, we show that we can improve the stability of
learning, get rid of problems like mode collapse, and provide meaningful
learning curves useful for debugging and hyperparameter searches. Furthermore,
we show that the corresponding optimization problem is sound, and provide
extensive theoretical work highlighting the deep connections to other distances
between distributions.
Users
Please
log in to take part in the discussion (add own reviews or comments).