Article,

Complex Extension of Quantum Mechanics

, , and .
Physical Review Letters, 89 (27): 270401+ (Oct 30, 2002)
DOI: 10.1103/physrevlett.89.270401

Abstract

It is shown that the standard formulation of quantum mechanics in terms of Hermitian Hamiltonians is overly restrictive. A consistent physical theory of quantum mechanics can be built on a complex Hamiltonian that is not Hermitian but satisfies the less restrictive and more physical condition of space-time reflection symmetry (PT symmetry). Thus, there are infinitely many new Hamiltonians that one can construct to explain experimental data. One might expect that a quantum theory based on a non-Hermitian Hamiltonian would violate unitarity. However, if PT symmetry is not spontaneously broken, it is possible to construct a previously unnoticed physical symmetry C of the Hamiltonian. Using C, an inner product is constructed whose associated norm is positive definite. This construction is completely general and works for any PT-symmetric Hamiltonian. Observables exhibit CPT symmetry, and the dynamics is governed by unitary time evolution. This work is not in conflict with conventional quantum mechanics but is rather a complex generalisation of it.

Tags

Users

  • @cmcneile

Comments and Reviews