Misc,

Cold gas stripping in satellite galaxies: from pairs to clusters

, , , , , , , , and .
(2016)cite arxiv:1611.00896Comment: 16 pages, 7 figures, 1 table, submitted with minor revisions to MNRAS.

Abstract

In this paper we investigate environment driven gas depletion in satellite galaxies, taking full advantage of the atomic hydrogen (HI) spectral stacking technique to quantify the gas content for the entire gas-poor to -rich regime. We do so using a multi-wavelength sample of 10,600 satellite galaxies, selected according to stellar mass (log M$_\star$/M$_ødot$ $\geq$ 9) and redshift (0.02 $łeq$ z $łeq$ 0.05) from the Sloan Digital Sky Survey, with HI data from the Arecibo Legacy Fast ALFA (ALFALFA) survey. Using key HI-to-stellar mass scaling relations, we present evidence that the gas content of satellite galaxies is, to a significant extent, dependent on the environment in which a galaxy resides. For the first time, we demonstrate that systematic environmental suppression of gas content at both fixed stellar mass and fixed specific star formation rate (sSFR) in satellite galaxies begins in halo masses typical of the group regime (log M$_h$/M$_ødot$ < 13.5), well before galaxies reach the cluster environment. We also show that environment driven gas depletion is more closely associated to halo mass than local density. Our results are then compared with state-of-the-art semi-analytic models and hydrodynamical simulations and discussed within this framework, showing that more work is needed if models are to reproduce the observations. We conclude that the observed decrease of gas content in the group and cluster environments cannot be reproduced by starvation of the gas supply alone and invoke fast acting processes such as ram-pressure stripping of cold gas to explain this.

Tags

Users

  • @miki

Comments and Reviews