Article,

The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis

, , , and .
Renewable and Sustainable Energy Reviews, (November 2014)
DOI: 10.1016/j.rser.2014.07.080

Abstract

Between 2000 and 2010, China׳s electricity production had increased threefold and accounted for 50\% of domestic and 12\% of global CO2 emissions in 2010. Substantial changes in the electricity fuel mix are urgently required to meet China׳s carbon intensity target of reducing CO2 emissions by 40–45\% by 2020. Moreover, electricity production is the second largest consumer of water in China, but water requirements vary significantly between different electricity generation technologies. By integrating process-based life-cycle analysis (LCA) and input–output analysis (IOA) and through tracking national supply chains, we have provided a detailed account of total life-cycle carbon emissions (g/kWh) and water consumption (l/kWh) for eight electricity generation technologies – (pulverized) coal, gas, oil, hydro, nuclear, wind, solar photovoltaic, and biomass. We have demonstrated that a shift to low carbon renewable electricity generation technologies, i.e. wind, could potentially save more than 79\% of total life-cycle CO2 emissions and more than 50\% water consumption per kWh electricity generation compared to the current fuel mix and technology for electricity generation. If the projected wind farms are built by 2020, Inner Mongolia, one of the water scarce northern provinces, would annually save 179 MT CO2 (i.e. 44\% of Inner Mongolia׳s total CO2 emissions in 2008) and 418 million m3 (Mm3) water (18\% of its industrial water use in 2008) compared with the same amount of electricity produced from coal.

Tags

Users

  • @pbett

Comments and Reviews