Misc,

Update on an Electromagnetic Basis for Inertia, Gravitation, the Principle of Equivalence, Spin and Particle Mass Ratios

, , , and .
(September 2002)

Abstract

A possible connection between the electromagnetic quantum vacuum and inertia was first published by Haisch, Rueda and Puthoff (1994). If correct, this would imply that mass may be an electromagnetic phenomenon and thus in principle subject to modification, with possible technological implications for propulsion. A multiyear NASA-funded study at the Lockheed Martin Advanced Technology Center further developed this concept, resulting in an independent theoretical validation of the fundamental approach (Rueda and Haisch, 1998ab). Distortion of the quantum vacuum in accelerated reference frames results in a force that appears to account for inertia. We have now shown that the same effect occurs in a region of curved spacetime, thus elucidating the origin of the principle of equivalence (Rueda, Haisch and Tung, 2001). A further connection with general relativity has been drawn by Nickisch and Mollere (2002): zero-point fluctuations give rise to spacetime micro-curvature effects yielding a complementary perspective on the origin of inertia. Numerical simulations of this effect demonstrate the manner in which a massless fundamental particle, e.g. an electron, acquires inertial properties; this also shows the apparent origin of particle spin along lines originally proposed by Schroedinger. Finally, we suggest that the heavier leptons (muon and tau) may be explainable as spatial-harmonic resonances of the (fundamental) electron. They would carry the same overall charge, but with the charge now having spatially lobed structure, each lobe of which would respond to higher frequency components of the electromagnetic quantum vacuum, thereby increasing the inertia and thus manifesting a heavier mass.

Tags

Users

  • @a_olympia

Comments and Reviews