Unsupervised Detection of Violent Content in Arabic Social Media | BibSonomy

Unsupervised Detection of Violent Content in Arabic Social Media
.
Computer Science & Information Technology (CS & IT) (1-7 2017)

A monitoring system is proposed to detect violent content in Arabic social media. This is a new and challenging task due to the presence of various Arabic dialects in the social media and the non-violent context where violent words might be used. We proposed to use a probabilistic nonlinear dimensionality reduction technique called sparse Gaussian process latent variable model (SGPLVM) followed by k-means to separate violent from non-violent content. This framework does not require any labelled corpora for training. We show that violent and non-violent Arabic tweets are not separable using k-means in the original high dimensional space, however better results are achieved by clustering in low dimensional latent space of SGPLVM.
  • @laimbee
This publication has not been reviewed yet.

rating distribution
average user rating0.0 out of 5.0 based on 0 reviews
    Please log in to take part in the discussion (add own reviews or comments).