Article,

Integration of regional to outcrop digital data: 3D visualisation of multi-scale geological models

, , , , , , , and .
Computers & Geosciences, 35 (1): 4-18 (2009)3D Modeling in Geology.
DOI: https://doi.org/10.1016/j.cageo.2007.09.007

Abstract

Multi-scale geological models contain three-dimensional, spatially referenced data, typically spanning at least six orders of magnitude from outcrop to regional scale. A large number of different geological and geophysical data sources can be combined into a single model. Established 3D visualisation methods that are widely used in hydrocarbon exploration and production for sub-surface data have been adapted for onshore surface geology through a combination of methods for digital data acquisition, 3D visualisation, and geospatial analysis. The integration of georeferenced data across a wider than normal range in scale helps to address several of the existing limitations that are inherent in traditional methods of map production and publishing. The primary advantage of a multi-scale approach is that spatial precision and dimensionality (which are generally degraded when data are displayed in 2D at a single scale) can be preserved at all scales. Real-time, immersive, interactive software, based on a “3D geospatial” graphical user interface (GUI), allows complex geological architectures to be depicted, and is more inherently intuitive than software based on a standard “desktop” GUI metaphor. The continuing convergence of different kinds of geo-modelling, GIS, and visualisation software, as well as industry acceptance of standardised middleware, has helped to make multi-scale geological models a practical reality. This is illustrated with two case studies from NE England and NW Scotland.

Tags

Users

  • @abernstetter
  • @dblp

Comments and Reviews