Article,

Chiral tunnelling and the Klein paradox in graphene

, , and .
Nature Physics, (September 2006)read.
DOI: 10.1038/nphys384

Abstract

The so-called Klein paradox-unimpeded penetration of relativistic particles through high and wide potential barriers-is one of the most exotic and counterintuitive consequences of quantum electrodynamics. The phenomenon is discussed in many contexts in particle, nuclear and astro-physics but direct tests of the Klein paradox using elementary particles have so far proved impossible. Here we show that the effect can be tested in a conceptually simple condensed-matter experiment using electrostatic barriers in single- and bi-layer graphene. Owing to the chiral nature of their quasiparticles, quantum tunnelling in these materials becomes highly anisotropic, qualitatively different from the case of normal, non-relativistic electrons. Massless Dirac fermions in graphene allow a close realization of Klein's gedanken experiment, whereas massive chiral fermions in bilayer graphene offer an interesting complementary system that elucidates the basic physics involved.

Tags

Users

  • @corneliu

Comments and Reviews