Misc,

Evidence for Wide-Spread AGN Driven Outflows in the Most Massive z~1-2 Star Forming Galaxies

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and .
(2014)cite arxiv:1406.0183Comment: Submitted to Astrophysical Journal.

Abstract

In this paper we follow up on our previous detection of nuclear ionized outflows in the most massive (log(M*/Msun) >= 10.9) z~1-3 star-forming galaxies (Forster Schreiber et al.), by increasing the sample size by a factor of six (to 44 galaxies above log(M*/Msun) >= 10.9) from a combination of the SINS/zC-SINF, LUCI, GNIRS, and KMOS^3D spectroscopic surveys. We find a fairly sharp onset of the incidence of broad nuclear emission (FWHM in the Ha, NII, and SII lines ~ 450-5300 km/s), with large NII/Ha ratios, above log(M*/Msun) ~ 10.9, with 66+/-15% of the galaxies in this mass range exhibiting this component. Broad nuclear components near and above the Schechter mass are similarly prevalent above and below the main sequence of star-forming galaxies, and at z~1 and ~2. The line ratios of the nuclear component are fit by excitation from active galactic nuclei (AGN), or by a combination of shocks and photoionization. The incidence of the most massive galaxies with broad nuclear components is at least as large as that of AGNs identified by X-ray, optical, infrared or radio indicators. The mass loading of the nuclear outflows is near unity. Our findings provide compelling evidence for powerful, high-duty cycle, AGN-driven outflows near the Schechter mass, and acting across the peak of cosmic galaxy formation.

Tags

Users

  • @miki

Comments and Reviews