Article,

The chemical mechanism of action of glucose oxidase from Aspergillus niger.

, , , , and .
Mol Cell Biochem, 260 (1-2): 69--83 (May 2004)
DOI: 10.1023/B:MCBI.0000026056.75937.98

Abstract

Glucose oxidase from Aspergillus niger (EC 1.1.3.4) is able to catalyze the oxidation of beta-D-glucose with p-benzoquinone, methyl-1,4-benzoquinone, 1,2-naphthoquinone, 1,2-naphthoquinone-4-sulfonic acid, potassium ferricyanide, phenazine methosulfate, and 2,6-dichloroindophenol. In this work, the steady-state kinetic parameters, V1/K(B), for reactions of these substrates were collected from pH 2.5-8. Further, the molecular models of the enzyme's active site were constructed for the free enzyme in the oxidized state, the complex of beta-D-glucose with the oxidized enzyme, the complex of reduced enzyme with methyl-1,4-benzoquinone, the reduced enzyme plus 1,2-naphthoquinone-4-sulfonic acid, oxidized enzyme plus reduced 1,2-naphthoquinone-4-sulfonic acid (hydroquinone anion), and oxidized enzyme plus fully reduced 1,2-naphthoquinone-4-sulfonic acid. Combining the steady-state kinetic and structural data, it was concluded that Glu412 bound to His559, in the active site of enzyme, modulates powerfully its catalytic activity by affecting all the rate constants in the reductive and the oxidative half-reaction of the catalytic cycle. His516 is the catalytic base in the oxidative and the reductive part of the catalytic cycle. It was estimated that the pKa of Glu412 (bound to His559) in the free reduced enzyme is 3.4, and the pKa of His516 in the free reduced enzyme is 6.9.

Tags

Users

  • @biblio24

Comments and Reviews