Article,

Sodium/calcium exchanger (NCX1) macromolecular complex.

, , , and .
J. Biol. Chem., 278 (31): 28849--28855 (August 2003)
DOI: 10.1074/jbc.M300754200

Abstract

The sodium-calcium exchanger, NCX1, is a ubiquitously expressed membrane protein essential in calcium homeostasis for many cells including those in mammalian heart and brain. The function of NCX1 depends on subcellular ("local") factors, the phosphorylation state of NCX1, and the subcellular location of NCX1 within the cell. Here we investigate the molecular organization of NCX1 within the cardiac myocyte. We show that NCX1 is dynamically phosphorylated by protein kinase A (PKA)-dependent phosphorylation in vitro. We also provide evidence that the regulation of this phosphorylation is attributed to the existence of an NCX1 macromolecular complex. Specifically, we show that the macromolecular complex includes both the catalytic and regulatory subunits of PKA. However, only the RI regulatory subunit is found in this macromolecular complex, not RII. Other critical regulatory enzymes are also associated with NCX1, including protein kinase C (PKC) and two serine/threonine protein phosphatases, PP1 and PP2A. Importantly, the protein kinase A-anchoring protein, mAKAP, is found and its presence in the macromolecular complex suggests that these regulatory enzymes are coordinately positioned to regulate NCX1 as has been found in diverse cells for a number of channel proteins. Dual immunocytochemical staining showed the colocalization of NCX1 protein with mAKAP and PKA-RI proteins in cardiomyocytes. Finally, leucine/isoleucine zipper motifs have been identified as possible sites of interaction. Our finding of an NCX1 macromolecular complex in heart suggests how NCX1 regulation is achieved in heart and other cells. The existence of the NCX1 macromolecular complex may also provide an explanation for recent controversial findings.

Tags

Users

  • @hake

Comments and Reviews