Quantum information scrambling in a trapped-ion quantum simulator with tunable range interactions
, , , , , , , and .
(2020)cite arxiv:2001.02176Comment: 9 pages and 8 figures.

In ergodic many-body quantum systems, locally encoded quantum information becomes, in the course of time evolution, inaccessible to local measurements. This concept of "scrambling" is currently of intense research interest, entailing a deep understanding of many-body dynamics such as the processes of chaos and thermalization. Here, we present first experimental demonstrations of quantum information scrambling on a 10-qubit trapped-ion quantum simulator representing a tunable long-range interacting spin system, by estimating out-of-time ordered correlators (OTOCs) through randomized measurements. We also analyze the role of decoherence in our system by comparing our measurements to numerical simulations and by measuring Rényi entanglement entropies.
  • @marschu
This publication has not been reviewed yet.

rating distribution
average user rating0.0 out of 5.0 based on 0 reviews
    Please log in to take part in the discussion (add own reviews or comments).