Abstract
We continue the investigation into the power of smaller Transformer-based
language models as initiated by TinyStories -- a 10 million parameter
model that can produce coherent English -- and the follow-up work on
phi-1, a 1.3 billion parameter model with Python coding performance
close to the state-of-the-art. The latter work proposed to use existing Large
Language Models (LLMs) to generate ``textbook quality" data as a way to enhance
the learning process compared to traditional web data. We follow the
``Textbooks Are All You Need" approach, focusing this time on common sense
reasoning in natural language, and create a new 1.3 billion parameter model
named phi-1.5, with performance on natural language tasks comparable
to models 5x larger, and surpassing most non-frontier LLMs on more complex
reasoning tasks such as grade-school mathematics and basic coding. More
generally, phi-1.5 exhibits many of the traits of much larger LLMs,
both good -- such as the ability to ``think step by step" or perform some
rudimentary in-context learning -- and bad, including hallucinations and the
potential for toxic and biased generations -- encouragingly though, we are
seeing improvement on that front thanks to the absence of web data. We
open-source phi-1.5 to promote further research on these urgent
topics.
Users
Please
log in to take part in the discussion (add own reviews or comments).