Article,

A surrogate fuel for kerosene

, , , and .
Proceedings of the Combustion Institute, 32 (1): 485-492 (2009)

Abstract

Experimental and numerical studies are carried out to develop a surrogate that can reproduce selected aspects of combustion of kerosene. Jet fuels, in particular Jet-A1, Jet-A, and JP-8 are kerosene type fuels. Surrogate fuels are defined as mixtures of few hydrocarbon compounds with combustion characteristics similar to those of commercial fuels. A mixture of n-decane 80% and 1,2,4-trimethylbenzene 20% by weight, called the Aachen surrogate, is selected for consideration as a possible surrogate of kerosene. Experiments are carried out employing the counterflow configuration. The fuels tested are kerosene and the Aachen surrogate. Critical conditions of extinction, autoignition, and volume fraction of soot measured in laminar non premixed flows burning the Aachen surrogate are found to be similar to those in flames burning kerosene. A chemical-kinetic mechanism is developed to describe the combustion of the Aachen surrogate. This mechanism is assembled using previously developed chemical-kinetic mechanisms for the components: n-decane and 1,2,4-trimethylbenzene. Improvements are made to the previously developed chemical-kinetic mechanism for n-decane. The combined mechanisms are validated using experimental data obtained from shock tubes, rapid compression machines, jet stirred reactor, burner stabilized premixed flames, and a freely propagating premixed flame. Numerical calculations are performed using the chemical-kinetic mechanism for the Aachen surrogate. The calculated values of the critical conditions of autoignition and soot volume fraction agree well with experimental data. The present study shows that the chemical-kinetic mechanism for the Aachen surrogate can be employed to predict non premixed combustion of kerosene.

Tags

Users

  • @itv

Comments and Reviews