Misc,

The Galaxy Counterparts of the two high-metallicity DLAs at z=2.412 and z=2.583 towards Q0918+1636

, , , , , , , , , , , and .
(2013)cite arxiv:1306.2940Comment: 11 pages, submitted to MNRAS. Comments very welcome.

Abstract

The quasar Q0918+1636 (z=3.07) has two intervening high-metallicity Damped Lyman-alpha Absorbers (DLAs) along the line of sight, at redshifts of z=2.412 and 2.583. The z=2.583 DLA is located at a large impact parameter of 16.2 kpc, and despite this large impact parameter it has a very high metallicity (consistent with solar), a substantial fraction of H_2 molecules, and it is dusty as inferred from the reddened spectrum of the background QSO. The z=2.412 DLA has a metallicity of M/H=-0.6 (based on ZnII and SiII). In this paper we present new observations of this interesting sightline. HST/WFC3 imaging was obtained in the F606W, F105W and F160W bands. This is complemented by ground-based imaging in the u-, g-bands as well as K_s observations in the near-infrared (NIR). In addition, we present further spectroscopy with the ESO/VLT X-Shooter spectrograph. Based on these observations we obtain the following results: By fitting stellar population synthesis models to the photometric SED we constrain the physical properties of the z=2.583 DLA galaxy, and we infer its morphology by fitting a Sersic model to its surface brightness profile. We find it to be a relatively massive (M_star 10^10 M_sun), strongly star-forming (SFR~30 M_sun / yr, dusty (E_(B-V)=0.4) galaxy with a disk-like morphology. We detect most of the strong emission lines from the z=2.583 DLA OIII,3727, OIII,4960, OIII,5007, Hbeta, and Halpha, albeit at low signal-to-noise (SN) ratio except for the OIII,5007 line. We also detect OIII,5007 emission from the galaxy counterpart of the z=2.412 DLA at a small impact parameter (<2 kpc). Overall our findings are consistent with the emerging picture that high-metallicity DLAs are associated with relatively (compared to typical DLAs) luminous and massive galaxy counterparts.

Tags

Users

  • @miki

Comments and Reviews