Article,

The mutation in the major vacuolar cation channel TPC1 confers tolerance to inhibitory luminal calcium

, , , , , , and .
Plant Journal, 58 (5): 715-723 (2009)473px Times Cited:96 Cited References Count:35.
DOI: 10.1111/j.1365-313X.2009.03820.x

Abstract

The SV channel encoded by the TPC1 gene represents a Ca2+- and voltage-dependent vacuolar cation channel. Point mutation D454N within TPC1, named fou2 for fatty acid oxygenation upregulated 2, results in increased synthesis of the stress hormone jasmonate. As wounding causes Ca2+ signals and cytosolic Ca2+ is required for SV channel function, we here studied the Ca2+-dependent properties of this major vacuolar cation channel with Arabidopsis thaliana mesophyll vacuoles. In patch clamp measurements, wild-type and fou2 SV channels did not exhibit differences in cytosolic Ca2+ sensitivity and Ca2+, impermeability. K+ fluxes through wild-type TPC1 were reduced or even completely faded away when vacuolar Ca2+ reached the 0.1-mm level. The foul protein under these conditions, however, remained active. Thus, D454N seems to be part of a luminal Ca2+ recognition site. Thereby the SV channel mutant gains tolerance towards elevated luminal Ca2+. A three-fold higher vacuolar Ca/K ratio in the fou2 mutant relative to wild-type plants seems to indicate that fou2 can accumulate higher levels of vacuolar Ca2+ before SV channel activity vanishes and K+ homeostasis is impaired. In response to wounding fou2 plants might thus elicit strong vacuole-derived cytosolic Ca2+ signals resulting in overproduction of jasmonate.

Tags

Users

  • @rainerhedrich_2

Comments and Reviews