Article,

Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions

, and .
Physics in Medicine and Biology, 51 (23): 6141-6156 (2006)

Abstract

In this paper, we formulate a model for human ventricular cells that is efficient enough for whole organ arrhythmia simulations yet detailed enough to capture the effects of cell level processes such as current blocks and channelopathies. The model is obtained from our detailed human ventricular cell model by using mathematical techniques to reduce the number of variables from 19 to nine. We carefully compare our full and reduced model at the single cell, cable and 2D tissue level and show that the reduced model has a very similar behaviour. Importantly, the new model correctly produces the effects of current blocks and channelopathies on AP and spiral wave behaviour, processes at the core of current day arrhythmia research. The new model is well over four times more efficient than the full model. We conclude that the new model can be used for efficient simulations of the effects of current changes on arrhythmias in the human heart.

Tags

Users

  • @hake

Comments and Reviews