bookmarks  34

  •  

    MIT researcher Seth Lloyd believes that a new architecture for quantum random access memory (QRAM) could be used to reduce the energy wasted by random access memory (RAM) as well as for completely anonymous Internet searchers. Classical computing requires the use of RAM to retrieve information, but RAM design is wasteful and subject to interference, Lloyd says. Lloyd worked with Vittorio Giovannetti at the NEST-CNR-INFM in Pisa, Italy, and Lorenzo Maccone at the University of Pavia, Italy, to create a system that works as QRAM. Lloyd says their QRAM architecture was discovered when his colleagues and him were researching how to make QRAM work on classical RAM design. He says QRAM is a "sneakier" way of accessing RAM. In traditional RAM, the first bit of an address throws two switches, the second throws four, and so on, Lloyd says. With QRAM, "all the bits of the address only interact with two switches," Lloyd says. The energy saved using QRAM is not enough to offset the larger energy problems associated with classical computing, and Lloyd says QRAM is slower than RAM. However, he says QRAM's benefits can be applied to quantum Internet searches. "If you had a quantum Internet, then this would be useful," he says. "This offers a huge decrease in energy used and an increase in robustness." For this to work, Lloyd says "dark fiber" is needed, and although it is already being used for some classical communications, a quantum Internet would need more.
    17 years ago by @gwpl
     
      acm_technews
       
       
    •  

      According to a recent survey from Merrill Lynch, 16% of the Baby Boomer workforce is looking for part-time work, and 42% will only take jobs that will allow them time off for leisure. Similar types of findings across all demographics are forcing companies to re-evaluate the flexibility options that they offer employees, especially as the so-called war for talent intensifies. While organizations recognize that inflexible work arrangements are a primary reason top talent leaves an organization, the actual implementation of these flexible work arrangements can be difficult to implement. As a guide, the article provides a review of flexible work arrangements at six different companies. When it comes to implementing a flexible work arrangement, a number of conditions prompt organizations to reconfigure their work plans. For example, the company could be losing market share, experiencing a deteriorating bottom line or facing a chronic shortage of talent. While there may be many reasons for an organization to embrace more flexible work situations for employees, common arrangements include flex scheduling that accommodates doctor appointments or school visits. Other arrangements include telecommuting one or more days per week; compressing workweeks from five days to four or three days per week; and job sharing.
      17 years ago by @gwpl
       
        acm_technews
         
         
      •  

        University of California, Berkeley professor of electrical engineering and computer sciences Richard Karp has been named a laureate of the 2008 Kyoto Prize, Japan's equivalent of the Nobel Prize, awarded by the Inamori Foundation. Karp is being recognized for his lifetime achievements in computer theory. A senior research scientist at the International Computer Science Institute in Berkeley, he is considered one of the world's leading computer theorists. Karp's work has significantly advanced the theory of NP-completeness, conceived in 1971 by former UC Berkeley math professor Stephen Cook. Karp developed a standard method for characterizing combinatorial problems into classes and identifying their level of intractability. Combinatorial problems that are NP-complete are the most difficult to solve. "Karp's theory streamlined algorithm design for problem-solving, accelerated algorithm engineering, and brought computational complexity within the scope of scientific research," says the Inamori Foundation. NP-completeness theory has become a cornerstone in modern theoretical computer science, and in the 1980s Cook and Karp received an ACM A.M. Turing Award for their contributions to the concept of NP-completeness. Karp has recently focused on bioinformatics and computational biology, including the development of algorithms for constructing various kinds of physical maps of DNA targets, and methods for classifying biological samples on the basis of gene expression data.
        16 years ago by @gwpl
         
          acm_technews
           
           
        •  

          Most people today are only users of the information technology systems provided, making changes only when prompted, using "creativity" tools that stifle innovation, and accepting failures, disappointments, and crashes as inevitable and expected, writes Bill Thompson. In general, he says users accept the lack of programming tools or encouragement to engage in writing code, possibly because of the increasing complexity of modern computer systems. With so many users completely ignorant on how to program, it becomes difficult to have a serious debate about the core technical issues that affect the development and deployment of IT systems in our lives. The applications that support all aspects of society are all built by programmers, and there is a startling lack of programmers entering the software industry. Universities have seen applications for computer science degrees drop off, and computing is considered a non-essential subject in high school. Thompson says children need to see that programming is a useful skill that can be applied to a variety of careers. He says if more children were provided with suitable languages and tools for programming at school or at home, there would be at least some chance that those with an aptitude for coding would discover it early enough to become interested in the field.
          17 years ago by @gwpl
           
           
        •  

          The use of organic and chemical materials to perform digital signal processing without electrical currents could be the next major technological revolution, say Northwestern professors Sotirios Tsaftaris and Aggelos Katsaggelos. Their research includes studying the use of DNA for digital signal processing, as DNA strands can be used to input and process elements, and DNA is an excellent medium for data storage. Digital samples can be recorded in DNA, which can be kept in a liquid form in test tubes to save space. DNA can also be easily replicated using common laboratory techniques, creating a database that could be easily searched, no matter how large. Over the past 10 years scientists and engineers have experimented with different materials for performing signal processing, possibly leading to a "not-so-electric future" of digital signal processing, according to Tsaftaris and Katsaggelos. For example, artist and scientist Cameron Jones discovered that fungi grown on CDs causes the optically recorded sound to be distorted by the fungi, and that the fungi growth patterns were dependent on the optical grooves recorded on the CD. Meanwhile, in 2005, a group of E. coli cells were modified to react to light and were able to perform edge detection of an image, a basic processing task.
          17 years ago by @gwpl
           
           

        publications  229